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ABSTRACT 

‘Memristors’ are a relatively new technology that have huge potential to realize logic circuits 

much more efficiently than CMOS circuits due to power and size advantages. However, today’s 

logic tools are made for CMOS circuits and do not take into account the properties of Memristor 

circuits. An IMPLY gate is the basic Memristor gate, as opposed to AND/OR/NOT gates in 

traditional CMOS circuits. A Memristor gate can be re-used repeatedly with timing pulses. A logic 

synthesis tool must optimize the pulse counts and number of Memristors. I designed an algorithm 

to realize an arbitrary logic function using only two working Memristors. I started exploring trade-

offs between the number of working Memristors and pulse count.  I further designed and 

implemented other methods making modifications to traditional approaches such as SOP, POS and 

ESOP minimizations.  Using decision functions, I generalize the process to optimize the pulse 

count. I also invented the Imply Sequence Diagram, a new notation to represent Memristor circuits 

with pulse counts. These generalized methods and notations will be very beneficial in the 

realization of Memristor based circuits. 

INTRODUCTION 

 

The three basic circuit elements of electrical engineering are the resistor, capacitor, and 

inductor. In 1971, Leon Chua discovered the fourth fundamental element, which he called a 

memristor, short for ‘memory resistor’ [Chua71]. This memristor did not attract much practical 

interest at this time, as it was not realized as a single physical device. Since the “re-invention” of 

the memristor by Hewlett-Packard Corporation in 2008, many applications have emerged 

[Strukov08]. Memristors have been proposed for memory design, logic-in-memory-design, 

standard binary combinational logic [Borghetti10, Lehtonen09, Lehtonen10], multiple-valued 

and fuzzy logic, and analog circuits. From the point of view of system synthesis, especially exciting 

is the possibility of having very large memories that at the same time perform some logic 

calculations at low cost. This topic is directly related to this paper, as a small number of working 

memristors (WM) is assumed. 

This paper focuses on memristor-based binary logic circuits, presenting a new approach to 

logic synthesis using the memristor-based IMPLY gates [Lehtonen09, Lehtonen10]. There are 
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also other binary gate proposals built with memristors, but the variant discussed here is the only 

one that has been practically realized and is supported by Hewlett-Packard [Borghetti10]. There 

also exist other types of memristors [Lehtonen12] besides “binary switches”; these are not of 

interest in this paper. 

BACKGROUND ON MEMRISTORS 

Memristors are new passive circuit elements with interesting non-linear, analog, and memory 

properties that can be used for various forms of computations.  

A memristor is similar to a resistor however its resistance depends on its past state. A memristor 

has a memory component based on the voltage it has seen in the past, hence the name “memory 

resistor”. If a voltage is applied and the resistance increases, then that resistance will remain the 

same the next time that a voltage in the same direction is applied. 

Compared to other circuit elements, including transistors, circuits realized with memristors 

have a smaller form factor due to significantly less number of physical elements needed for any 

given circuit. This has the potential for higher integration. While memristors have been used 

mainly for memories so far, they can also be used to realize combinational logic and sequential 

circuits from truth tables or other specifications. 

Figure 1: (a) Basic Memristor Characteristics, Source: [Strukov08],   
(b) Voltage/Current Relationship 

  
The important characteristic of a (“binary switch” type) memristor is shown in the graph in 

Figure 1(b), where the steep curve indicates the low resistance (the ‘on’ state of the memristor), as 

shown by line AB and the flatter curve indicates the high resistance (the ‘off’ state of the 

memristor) as shown by line interval CD.  
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The memristor’s state given by interval AB can also be described as ‘closed’ or as ‘1’ or ‘true’ 

in binary state definitions. Similarly, the state given by line interval CD can also be described as 

‘open’ or as ‘0’ or ‘false’ in binary state definitions.  

When the voltage is increased beyond a certain point, shown as Vopen, the state of the memristor 

changes from closed to open (transition point B to C in the diagram). Now as the voltage is 

decreased and goes through the zero point, the resistance stays the same until the negative voltage 

exceeds Vclose. At this point the state changes from open to closed (shown by transition from point 

D to A). 

If the voltage remains between Vclose and Vopen, then there is no change in the state of the 

memristor. 

The change of state from open to closed and closed to open allows the memristor to act as a 

binary switch. The fact that the state remains the same when the voltage is between Vopen and Vclose 

provides the important ‘memory’ property. Even when the voltage is removed, the state will 

remain the same, and is remembered.  Observe that while a transistor is a three-terminal device, a 

memristor is only a two-terminal device which significantly simplifies the layout. 

 

REALIZATION OF BASIC LOGIC GATES WITH 
MEMRISTORS 

The IMPLY gate is the basic ‘virtual’ gate for memristors and it can be represented by (P  Q) 

equivalent to (P̅ + Q), as shown in Figure 2. This is also known as a material implication, a logic 

gate that in contrast to NOT, AND, OR, NAND and EXOR was not used much in logic synthesis 

until [Lehtonen09].  The memristor is the first technology that makes the IMPLY logic operator 

truly important and useful for logic synthesis. 
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Figure 2: (a) An IMPLY Gate Truth Table,  

(b) IMPLY Gate realized with two Memristors P and Q 

 

Figure 2(a) shows the symbol and truth table for the IMPLY gate. Figure 2(b) shows the IMPLY 

Gate realized with two memristors. Note that this is a pulse-operated circuit, with pulses 

originating from voltage sources on top. Q is called the ‘working memristor’ (WM for short). Q is 

set to either zero or one in one pulse, and two additional voltage pulses are applied to P and Q. The 

output is available on the same memristor Q. As shown in the diagram from Figure 2(a), Q’ is the 

state of memristor Q after the pulse is applied. 

 

Figure 3: Workings of IMPLY gate using two Memristors.  
(a) Output when P=0, (b) Output when P=1 

 

Figure 3 shows in more details the realization of the IMPLY gate using two memristors and a 

grounding resistor. Figure 3(a) shows the circuit when the state of memristor P is ‘0’ (open). P has 

a high resistance and can be thought of as disconnected, which implies that the voltage across 

grounding resistor is approximately zero. This means that the voltage across the memristor Q is 

very close to Vset. As shown in Figure 2(b), Vset is greater that Vclose. The high voltage causes the 

state of Q to become ‘1’ regardless of Q’s original state (‘0’ or ‘1’).  

Figure 3(b) shows the circuit when the state of memristor P is ‘1’. Now P has a low resistance, 

and can be thought of as a wire, which implies that the voltage across the grounding resistor is 
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now the same as Vcond, the voltage applied at P input. This means that the voltage across Q is close 

to Vset-Vcond. Refering to Figure 1(b) again, the magnitude of  Vset-Vcond is less than Vclose, and is 

not enough to switch the state of Q irrespective of its previous state. This means that if Q’s state 

was ‘0’, it will remain ‘0’. If its state was ‘1’, it will remain ‘1’. 

Other logic gates can be realized with IMPLY gates, most easily NOT, NAND, and OR. Figure 

4 presents realization of these gates, assuming that the inputs A and B already exist (not an initial 

situation). As shown in Figure 4, the NOT gate is simply realized by initiliazing the value of the 

working memristor to 0, and then applying the value of variable A to the input memristor. A point 

to note here is that the working memristor is always the input line going to non-negated input of 

the IMPLY gate, and the input memristor is the input line going to the negated input of the IMPLY 

gate. In the case of NOT gate as shown, the output on the working memristor would be the negated 

value of the input. As shown in the figure, this takes one pulse for initialization and a second pulse 

(a pair of pulses Vset and Vcond) for the input (this paper is not concerned with detailed generation 

of pulses and for simplification, the two pulses will be treated as a single pulse for simplification). 

The output is available after the second pulse. However, if this is a part of another circuit, the 

initialization can be done in parallel with a previous operation, and the NOT operation can then be 

done in just one additional pulse. 

 

Figure 4. NOT, OR and NAND gates realized from IMPLY gates assuming that the inputs already exist. 

 

Implementation of a two-input NAND can be done with two IMPLY gates, but just one 

working memristor. However, it would require 3 pulses as shown in Figure 4. 
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An OR gate on other hand requires two working memristors and three pulses. Thus, it can be 

inferred that NOT and NAND are the gates of choice for circuit synthesis rather than the OR gate. 

Other gates (EXOR, NOR, AND etc.) also require two working memristors and more pulses. 

EXOR, XNOR, MUX, and other gates were also realized along with typical structures such as 

SOP, POS, negative gates, Positive Polarity Reed-Muller (PPRM) and Three level And Not 

networks with True Inputs (TANT) from IMPLY gates, and the trade-off between the number of 

WMs (see Table 2) and the total delay (number of pulses) was analyzed. the method presented 

here as well as other methods for synthesis with stateful IMPLY gates were created based on these 

analyses. 

A combination of  IMPLY gates, NAND gates and NOT gates will be used extensively in this 

paper.  

MEMRISTOR VS CMOS LOGIC CIRCUITS 

Memristors provide unique characteristics which make them much more efficient than currently 

used CMOS circuits. Because of the memory aspect of memristors, they reuse the same gate many 

times, therefore greatly reducing the spatial requirements. Memristor based circuits operate at 

significantly lower power. In CMOS circuits, if any state information needs to be persisted, the 

power must remain on. However, Memristors remember the state even if power is removed. This 

makes the overall average energy consumption of a Memristor circuit much lower than an 

equivalent CMOS circuit. 

While Memristor circuits have benefits, the nature of the Memristor logic circuit brings some 

new challenges to logic synthesis. As discussed above, the basic gate in a binary memristor circuit 

is an Imply gate. Imply operation is not commutative as are AND/OR operations. For example, 

AB is not the same as BA. So, while the sequence of operations in AND/OR expressions can 

be changed, the Imply operation must preserve the sequence.  

Memristor gates operate by changing the state of a working memristor with every pulse. New 

input combines with existing state and produces the new state. This leads to a problem that a 

working memristor cannot be used to feed the state to more than one gate. So, a fan-out from a 

memristor gate is not possible, and additional steps need to be taken to address this. This is 

illustrated in Figure 5. 
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Figure 5. Fan-Out problem (a) NAND gate output going to two gates.  

(b) Incorrect realization (c) fan-out problem fixed with additional gates 
 

Figure 5(a) shows a simple circuit where the input of a NAND gate is provided to two OR 

gates. Figure 5(b) shows NAND gate replaced by two Imply gates, and two OR gates implemented 

using Imply gates. The circuit would be equivalent in CMOS logic. But in memristor logic, the 

working memristor (as shown by double lines) holds the output of NAND gate. In next pulse, the 

output is OR’ed with the negation of A, and the value of memristor is now changed. The original 

output of NAND gate is lost and cannot be provided to the second OR gate below. Figure 5(c) 

introduces additional gates and working memristors to fix the problem. Notice that the output from 

first NAND gate is now used at pulse 4 before the state of the memristor gets changed in pulse 5. 

This unique characteristic of memristor circuits requires new Computer Aided Design (CAD) 

synthesis tools and a new notation to accurately represent the Memristor based Imply gate 

diagrams. 

IMPLY SEQUENCE DIAGRAM 

In this report, I will use the new “Imply Sequence Diagram” (ISD) notation that I invented for 

the application of analysing and synthesizing the memristor circuits. In this notation, horizontal 

lines represent physical memristors, while the  symbol represents a pulse applied to it. The top 

side of this symbol is the negated input. The left side is the non-negated input and the value of 
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memristor before the pulse. The right side is the value of the memristor after the pulse. A 0 on the 

left side indicates an additional pulse required to reset the input state of the memristor to 0. 

 
Figure 6. Imply Sequence Diagram (ISD Notation. 

(a) synthesis using one working memristor. (b) a different example with two working memristors. 
 
Figure 6 shows the ISD notation for two example circuits. The first one is a 4-input NAND gate 

using one working memristor. It can be seen that an n-input NAND gate can be easily realized by 

applying the appropriate input at subsequent pulses. A 4-input NAND gate can be realized with 5 

pulses as shown in the diagram. The second example shows a (unate) Sum of Products BC+AD 

and requires 8 pulses. 

This new notation helps draw the circuits that memorize all intermediate states and reuse virtual 

gates. It resembles the Feynman notation known from reversible and quantum circuits. In these 

two types of circuits and the memristor-based IMPLY circuits, the result of the physical gate is 

stored in the memristor so that the same (physical) resource (memristor) is reused repeatedly by 

many virtual IMPLY gates. In this notation, the horizontal axis corresponds to time (number of 

pulses) and the number of horizontal lines corresponds to the number of physical memristors. This 

notation is useful to verify the number of WMs that are used at any moment of the synthesis 

process. In addition to a “two-WM synthesis” from [Lehtonen09] and this paper, and a “multi-

WM synthesis” from [Burger13] in which any number of WM is possible, it is possible to design 

a method in which a given number K of “allowed WMs” is assumed. In such case the ISD diagram 

helps keep track of the current number of WMs, which is the number of horizontal lines in the 

diagram that are not input lines. This allows for synthesis of memristor circuits with any assumed 

number k of WM (k2). This assumption is motivated by future technologies that would allow 

k>2 and uses the algorithm from this paper (one for k=2) as a subroutine. 
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Realizing a circuit in this notation allows the output of an IMPLY gate (represented by a line 

in the ISD notation) to be given to many negated inputs of IMPLY but only to one non-negated 

input which is in the same line. Therefore, by using this notation the designer does not have to 

solve the fan-out problem. The ISD notation does not allow for direct connections between inputs 

and IMPLY gates. It clearly orders the designer to use another IMPLY as a negation to copy the 

variable A. 

The ISD notation allows for a simple investigation of the trade-offs between the number of 

WMs and the number of pulses for various types of logic implemented with IMPLY gates. This is 

similar to the trade-offs between the number of ancilla qubits and two-qubit gates in quantum 

circuit synthesis. Similar to reversible notation, ISD allows for the derivation of binary matrices 

of circuits using matrix multiplication sequentially in inverse order for serial connections and 

Kronecker multiplication for parallel connections of subcircuits. The only required primitives are 

a 4*4 matrix of IMPLY gate and a 2*2 matrix of FALSE (zero) gate (these matrices, in contrast to 

reversible logic are not permutative, otherwise all the methods are exactly the same). 

An important trait of memristors is that the output of the IMPLY gates is stored and is only 

changed if a pulse is applied. Because of this trait, it has been shown that any single output, n-

input Boolean function can be represented with n “input memristors” and  only two “working 

memristors” [Lehtonen09, Lehtonen10]. The role of a WM is to store the intermediate data. In 

contrast to classical CMOS logic in which combinational and sequential primitives exist, every  

logic operator in memristor technology stores the data. There is no need to separate the 

combinational and sequential logic concepts; therefore I believe that some new notations and 

design methodologies for sequential circuits, state machines, iterative circuits and 

pipelined/systolic systems with memristors should be invented. In this case, they are all based on 

generalizations to ISD, but other possibilities should also be investigated in the future. 

Imply Sequence Diagram notation in Figure 6(a) shows a circuit that only physically uses one 

working memristor. The squares represent the reuse of this memristor in time. The memristor is 

able to use the output of the previous cycle and use it as an input to the next cycle. The figure 

illustrates that a NAND of n inputs can be built with one WM and n+1 pulses. We also see that 

the design process with IMPLY gates differs from the classical combinational synthesis and it is 

more similar to scheduling and allocation of operators (virtual IMPLY gates in this case) to 

physical resources (memristors in this case).  
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More information on memristors, IMPLY gates and generation of timing pulses can be found 

in [Burger12, Borghetti10, Kvatinsky11, Poikonen12]. 

LOGIC SYNTHESIS TO MINIMIZE THE DELAY IN 
MEMRISTOR NETWORK WITH TWO WORKING 
MEMRISTORS 

Because one can build gates like OR, AND, NAND, EXOR and NOT from IMPLY gates, any 

known synthesis method can be adopted to design logic circuits with memristors. In particular, the 

synthesis methods such as: Sum-of-Products networks (SOP), Product-of-Sums (POS), TANT and 

NAND networks [Gimpel67], linear, bi-decomposition [Mishchenko01], Ashenhurst-Curtis 

decomposition, Reed-Muller, ESOP and negative gate circuit  synthesis methods can be adopted 

and I have initially compared some of these methods on several types of single-output functions 

such as unate functions, parity functions and affine functions of many variables, cyclic functions, 

non-cyclic, balanced and self-dual functions. One can also try to develop exhaustive tree-search 

methods for the exact minimal number of pulses.  However, when following [Lehtonen09] and 

[Lehtonen10] we want to synthesize circuits that have the exact minimum number of physical 

working memristors (which is related to the contemporary realization technologies as of 2012). 

Thus, the choices of synthesis approach become reduced, as we have to assume that only positive 

literals (variables) are used in the expressions [Lehtonen09, Lehtonen10]. The papers of 

Lehtonen presented a canonical form with IMPLY gates which uses only positive literals in the 

expression. This algorithm follows the assumption of Lehtonen to use only two WM’s, therefore 

this algorithm uses only the positive literals to realize the function. However, this canonical form 

is not minimal, as observed by Lehtonen himself. Moreover, this form is previously known from 

the research on synthesis with the minimum number of negative (complex) gates ([Ibaraki71] and 

several papers following it). In general, this form does not lead to the minimum number of virtual 

IMPLY gates, nor does it produce a circuit with the minimum number of pulses. Its main advantage 

is only giving a warranty of at most two WMs.  Here a new method is presented that produces 

circuits that are never worse in the terms of pulse count than the circuits of Lehtonen.  (Lehtonen 

does not present a final algorithm or program nor does he discuss experimental results, so I 

compare my results only with my interpretation of his method). The presented method attempts to 

minimize the number of pulses (IMPLY gates) assuming two working memristors (the same as 
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Lehtonen). My algorithm does not give a guarantee of a minimal number of pulses but the results 

are promising when compared to SOP and ESOP circuits mapped to IMPLY gates. Although the 

presented variant realizes only single-output functions, it is relatively easy to extend this method 

to multi-output circuits. This method can also be extended to more than two WMs (not discussed 

here, look to [Burger13] for similar methods). 

The circuits synthesized by the algorithm MEMRMIN-2WM belong to the general class of 

circuits from [Lehtonen10]. It results directly from the procedure below and the ISD notation that 

this procedure needs at most two WMs. The constructive design procedure is a simpler and more 

intuitive explanation of this fact than the formal proof from [Lehtonen10]. 

To make my explanation really simple, K-maps and standard logic schemata are used, but the 

software uses truth tables internally and a graphical form of ISD notation on the output. At first 

my method creates some groups of 1’s (various types of the well-known prime implicants) which 

the method realizes with simple logic gates such as NAND. At any point, the largest group of 1’s 

(a prime implicant) is taken, in which the literals are all positive.  (A positive literal is a variable 

without a negation; a negative literal is a variable with negation). A product implicant is an 

implicant that is a product of literals. A product implicant is either a prime implicant or is included 

in a prime implicant. A product of positive literals from a product implicant (prime implicant) is 

called a kernel. A positive prime implicant of function f is a prime implicant of function f with all 

positive literals. Once the group is pinpointed, the gate is realized, and the 1’s are replaced with 

dashes (don’t cares) and may be used as any value in the next stages. This way, in addition to the 

original don’t cares from the specification, the method adds more don’t cares when realizing any 

prime of the function under synthesis. This property is especially useful when one synthesizes 

functions such as parity of many inputs. More and more don’t cares appear in the maps, which 

reduces the number of IMPLY gates and consequently the number of pulses. If the algorithm, 

based on principles given below, decides that there are no more groups to be realized at this layer 

of the circuit (i.e. level of primes selection), the inverter has to be inserted into the circuit and the 

K-map must be negated. When realizing logic gates, I try to primarily use NAND gates and 

inverters because these can be easily expanded to IMPLY gates. OR gates are realized as sequences 

of IMPLY gates.  

Here is the explanation of the key concepts to create a single layer of the circuit. By a layer I 

mean a sub-circuit that realizes a set of positive primes of function f or a set of positive primes of 
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one of the successively created remainder functions of f. An essential prime implicant (essential 

prime for short) is one that is the only possible prime implicant to cover a certain minterm (this 

minterm is called the essential vertex). The algorithm first realizes only the essential prime 

implicants that are also products of positive literals. These are called positive primes. If there are 

several positive primes in a layer of the circuit realization, only those that are essential are realized 

in this layer. If there are several positive primes for some minterm and none of them are essential, 

the largest prime (the one with the least number of variables) is realized. If all primes have the 

same size, one of them is randomly selected.  

My algorithm realizes the circuit in layers starting from outputs of the circuit. For every layer, 

it finds the essential primes on positive literals and possible other primes on positive literals and 

replaces them with don’t cares. When no possible groups for selection remain, the function is 

negated and the next layer is realized until the specification function of 0’s is found.  

Figure 7 shows the K-map of the function f(A,B,C) which needs to be realized using the 

presented logic synthesis algorithm. This function f is trivial, but is sufficient to explain the 

synthesis process.  
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Figure 7: Function f shown in Karnaugh map, step 1 of realization. 

 

      The first step is to find the group of 1’s in which the input literals are all positive. One such 

group is selected. In the example, this is BC.  It is an essential positive prime, as there are no other 

positive primes covering minterm ABC (the essential vertex ABC). 

       BC is realized as a NAND gate and hooked to negative input of the IMPLY gate. So, at the 

end of this step -   

f (A,B,C) = r1 + BC,  

where r1 is the first remainder function. This is shown in the ISD notation in Figure 7. 

       Now the algorithm moves on to realize r1. Observe that there are no groups of 1’s that 

correspond to positive variables. For example, the top row has two 1’s, but this group is A̅B̅, so it 

does not qualify for selection. As there are no more positive primes, this completes the synthesis 

of the first layer. Now the entire K-map must be negated as shown in Figure 7 and r1 is replaced 

with a NOT gate and r2. In my software, negation of the K-map is simply reversing the roles of 

the temporary Onset and Offset tables. 

     At the end of this step, the function is realized by  

f (A,B,C) = r2 + BC.  

     The inverter is also realized with only an IMPLY gate. Figure 8 shows this stage. 

Figure 8: Inversion of r1 to r2 
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We can now find another group of 1’s (and don’t cares) which becomes the next positive prime 

implicant. This is shown in the Figure 9. Four middle squares are selected. These squares 

correspond to a positive essential prime B.  Since this is a single variable, we put a NOT gate 

instead of NAND gate as shown. At the end of this step, the function realization is  

f (A,B,C) =  (r3 + B) + BC 

 

In this trivial example, the process of selecting the best essential prime implicant is not illustrated. 

This is done using the covering table and a Decision Function. It is important for realizing minimal 

circuit for larger examples. This is described separately in the next section. 

 

 

 

Figure 9: Realization of r2 
 

      There is still a ‘1’ left in the K-map. To continue the process the remaining possible group 

(AC) is now selected, as shown in Figure 10. This positive prime is realized with an additional 

NAND gate. Group AC is again a positive essential prime so we do not need to use random choice. 

Since there is no more remainder function left, the algorithm puts a 0 at the remaining input of 

IMPLY gate.  
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Figure 10: Final step of synthesis 
 

     The final function is now equivalent to  

f (A,B,C) =  (AC + B) + BC 

 

     This is shown in the diagram in Figure 10. This function has two layers of positive primes, 

“BC” and “AC + B”. 

       

Figure 11 illustrates the pulse count in the circuit realized in Figure 10. The numbers at the top 

count the pulses; each cycle and each initialization have a pulse. 

 

  

 
Figure 11: Counting the Pulses in the ISD notation 
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To illustrate the difference of my algorithm MEMRMIN-2WM and the method Lehtonen that 

takes all positive primes in a layer, the function g = ACD + ABC̅ + A̅C̅D + A̅BC will be realized. 

To realize the first layer the algorithm will select only positive prime ACD as it is an essential 

prime of essential vertex AB̅CD. In contrast, Lehtonen’s algorithm will create the first layer ACD 

+ BD with a redundant positive prime BD. 

MINIMIZATION ALGORITHM MEMRMIN-2WM FOR BINARY 

LOGIC 

The software program implementing the algorithm reads the input from PLA files, K-map input 

files, or an equation in SOP format inputted as text string, and creates internal data structures. It is 

important to describe a few key data structures. All the minterms from the K-map are organized 

by the program into two sets. The OnSet array stores all minterms which have an output of 1. The 

OffSet array stores all minterms which have an output of 0. When a function needs to be negated, 

these two arrays can be simply switched. Once a set of minterms is realized, they go into don’t 

care set, which is not stored. If a minterm is not in OnSet and not in OffSet, it is implicitly a ‘don’t 

care’. Positive prime implicants and essential prime implicants are stored in KernelSet array and 

used for each layer. 

 

The following is the pseudo code of the core algorithm. 

 
while OnSet is not Empty 

forall minterms in OnSet 

create kernel with only positive variables from minterm 

if kernel covers an element in OffSet 

discard kernel 

else 

add kernel to KernelSet (if it is not already there) 

end_forall 

sort KernelSet with reduced implicants on top (all prime implicants of this layer. 

find essential prime implicants in KernelSet and move them to top 

forall kernels in sorted KernelSet 

realize the kernel with an n-input NAND gate, and accumulate result with IMPLY gate 

remove all subsets of this implicant in KernelSet 

remove all minterms covered by this kernel from OnSet array 

if OnSet is empty 

break from while loop 

end_forall 

if OnSet is not empty 

negate the remainder function by switching OnSet and OffSet 
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add a NOT gate to the circuit 

end_while 

count pulses for all NAND, IMPLY and NOT gate 

visually display results and pulse count 

SOP METHOD USING MEMRISTOR IMPLY GATES 

The software also implements the algorithm to use standard SOP expression and realize it using 

IMPLY gates. For a SOP expression with N input variables, the simplest algorithm uses N input 

memristors, N working memristors for negated input values, one working memristor for 

intermediate Product terms, and one working memristor for accumulating (summing) the product 

terms. Thus 2N+2 memristors are required. Figure 12 shows the implementation of SOP 

expression using this method. In another variant only three working memristors are needed, one 

used to create every negation of input variable, whenever this negation is necessary to realize a 

product. 

 

Figure 12: Realizing SOP expression (AC̅ + A̅B̅D + B̅D̅ + AB) with N+2 = 4+2 working memristors  
 

For the purpose of comparisons, the SOP expression was first minimized using Rondo tool and 

the minimized expression was then implemented using IMPLY gates to get the minimal necessary 

pulse count.  

It is also possible to reduce the working memristors in the process of Figure 12. If the negated 

values are not stored, the N working memristors used for negation can be reduced to one. This 

A
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D
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AC̅ AC ̅+ A̅B̅D AC ̅+ A̅B̅D + B̅D̅
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WM can be temporarily used to negate any variable that needs to be negated. This introduces one 

extra pulse for each occurrence of the negated variable in the SOP expression. 

On the contrary, the number of working memristors in Figure 12 can also be increased. By 

adding two more working memristors, the SOP expression can be split into half, and two half 

expressions can be realized in parallel and combined in an extra step at the end. This reduces the 

pulse count dramatically. However, the implementation of this approach using standard CMOL-

like CMOS/nano memristor cross-bars [Lehtonen12] may be difficult. Some special types of 

crossbars have to be invented that would allow for parallel pulses. 

Another important point to note is that if the WM2 in Figure 12 can be observed for a value of 

‘1’, the evaluation can be stopped as soon as it turns ‘1’. Once the value is ‘1’, it can never go to 

‘0’. Therefore, the process could take a much less number of pulses to complete.  

TANT NETWORKS USING MEMRISTOR IMPLY GATES 

A TANT network is a universal three level network composed solely of NAND (AND-NOT) 

gates with only positive inputs. Figure 13 show a multi-output function using a TANT network. 

The two outputs realized are  

 f1 =  a(ab)’+bc(cd)’ , and  

 f2 =  bc(cd)’ + c(cd)’ 
 

Figure 13. An example of TANT (Three Level And-NOT network with True Inputs) Network 
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The TANT network can be converted to use Memristor Imply gates. Some care needs to be 

taken to address fan-out issue, as the intermediate signals labelled x2 and x4 are going to two 

different gates. The implementation of this circuit using the Memristor gates is shown in the ISD 

notation in Figure 14. 

 
Figure 14. TANT network realized by Memristor Imply Gates 

 

DECISION FUNCTION FOR SELECTION OF PRIME 

IMPLICANTS 

MEMRMIN-2WM algorithm described above relies on the selection of best essential prime 

implicants to minimize the cost of the network. All other minimization algorithms such as SOP, 

POS, ESOP and TANT also require the selection of essential prime implicants. I address this step 

of the synthesis using covering table and Decision Function. 

For MEMRMIN-2WM, POS and SOP, the problem is addressed using only the ‘covering 

table’. This results in the Decision Functions that only have positive literals. These are referred to 

as Unate functions.  ESOP and TANT minimization methods requires the use of a closure table in 

addition to the covering table. The closure table provides additional constraints. This results in 

negated literals in the Decision Function. These functions are referred to as Binate functions.  This 

process is described in more detail below. 
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Figure 15. A covering table for SOP Implicants 

 

      The Karnaugh map in Figure 15(a) is used here to illustrate the covering problem and decision 

function algorithm. The circled regions are the implicants. Certain implicants are necessary or 

‘prime’ because one or more of the minterms are only covered by that implicant. However, some 

of the implicants are nonessential because all minterms are covered by other implicants. To realize 

functions like these, it is ideal to take the least number of implicants in order to ensure efficiency. 

The problem described is called the covering problem and there exist many methods of solving it.   

From the K-map, a covering table is created as shown in Figure 15(b).  All implicants are listed 

as rows of the table. All positive minterms are listed as columns of the table. Each implicant is 

labeled, for example the implicant which covers bd is named E. For each positive minterm, an X 

is placed in the rows where the implicant covers that minterm. After creating a covering table, an 

expression is written based on the table. Each columnis examined, and the options of the implicants 

that cover that minterm are collected. For example, the minterm 0000 is covered by A and B. 

Hence either A or B must be taken to satisfy the function. Since all minterms must be covered, a 

product is written of the individual options to create an expression. For the example in Figure 15, 

the expression is (A+B).(B+C).(C).(C+D).(C+D).(A+E).(E).(D). 

Another example is presented in Figure 16. 
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Figure 16. Another example of covering table for SOP Implicants 
 

 

For this example in Figure 16, the expression derived from the covering table would be - 

 (A)(A+E)(B)(B+E)(D)(D+E)(C)(C+E).  

 

Now we apply Decision Function algorithm to select the labeled implicants (literals) from the 

above expression. This can be realized using various branching methods to find the optimal 

solutions. My program uses different Decision Function methods. 

Method 1 is an exhaustive search which uses recursion to branch setting a literal to 1 to create 

a branch, and then creating all possible branches. Setting a literal to 1 implies that the 

corresponding implicant is picked. The expression is now reduced. For example, the expression  

(A+B)(B+C)  (C)  (C+D)  (C+D)  (A+E)  (E)  (D) reduces to (B+C)  (C)  (C+D)  (C+D)  

(E)  (D) if A is set to 1. The branching continues until the entire expression reduces to 1. The 

selected literals in the branch is a solution. This method finds all solutions and then eliminates 

solutions which are not optimal, leaving an array of optimal solutions. Solutions which are not 

optimal would include ones which are subsets of others. For example, if A and AB are two different 

soltuions, Method 1 would eliminate AB from the array of optimal solutions. However, if BC was 

another solutions, this solution would be kept because it is not a subset of A or AB. This method 

also works with negated variables.  

Method 2 is a heuristic approach. The heuristic approach is my preferred method because of 

efficiency. The first step of this algorithm is to select all positive literals that are standalone. For 

example in expression (A+B).(B+C).(C).(C+D).(C+D).(A+E).(E).(D), three literals C, D and E 

are selected. Then the algorithm  branches for literals which occur most often in the expression. 

The most occuring variable or variables are set to 1, and the same process is repeated on the 
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00 0 1 0 0

01 0 1 1 1
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reduced expression. As opposed to Method 1, this method finds all optimal solutions automatically 

instead of finding all solutions and then narrowing down the list. This method does not work for 

satisfiability problem, because it may give a solution to a problem which in reality has no solution. 

Using Method 2, the expression (A+B).(B+C).(C).(C+D).(C+D).(A+E).(E).(D) from first 

example is solved in two steps. In step 1, C, D and E are selected (as they are standalone), reducing 

the expression to (A+B). In second step A or B are selected. Thus, the solutions are CDEA or 

CDEB. 

Similarly, the expression from second example, (A)(A+E)(B)(B+E)(D)(D+E)(C)(C+E) is 

solved in single step. Since A,B,C,D must be selected, the expression immediately reduces to 1, 

and ABCD is the solution. It is interesting to note that E (which is bd) is larger implicant that other 

four implicants, but it is not selected since it is already covered by other essential prime implicants 

(ABCD). 

The decision function example above shows the Unate function that works for SOP and POS 

minimization. As I am looking at other different structures such as ESOP, multi level NAND 

networks and TANT networks, the minimization problem requires the use of covering-closure 

table, which leads to Binate functions. This is illstrated with a simple example in Figure 17. 

 

This is a simple XOR gate implemented using a TANT function. The left side shows one way 

to select the implicants, where ab is subtracted from a to get one implicant, and ab is subtracted 

from b to get the second. On the right side, there is another way to select the implicants, where a 

is subtracted from b to get one implicant and b is subtracted from a to get the other implicant.  

Figure 17. Another example of covering table for SOP 
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The set of implicants that can be used are ab̅, a̅b, !(ab), a and b. But if b̅ is selected that implies 

that ‘a’ must be selected. This requires creation of the covering-closure table as shown in Figure 

18. 

 

 

Figure 18. Covering-Closure Table 

 

The top left quadrant is the the covering table which is same as what I described earlier. All the 

rows are labeled with unique literals. Minterm 10 is covered by ab̅ which is X label. Minterm 01 

is covered by Y. The bottom right quadrant is the closure table. The rows are positive kernels of 

the implicants. To fill this part, each column of closure table is examined. In the example, to get 

the negated  b̅ implicant X must be selected,  which is either ab’ or equivalent to a(ab)’. So, b’ can 

be derived from either b or ab. So in the closure table, either Z or W must be selected. Similarly to 

cover a̅, Y implicant is selected, which is equivalent to ba’ or b(ab)’. This requires either Z or V 

to be selected. This translates into the following decision function. X.Y.(XZ+W).(YZ+V) 

The imply operation (AB) can also be written as A̅+B. This the decision function can be re-

written as X.Y.(X̅+Z+W).(Y̅+Z+V).  

This is now a Binate function with negated literals. My decision function work well for such 

Binate functions as well. The algorithm will select X and Y as the implicants. This is a trivial case 

to illustrate how the decision functions are created in TANT minimization problem. A bigger 

function should be used to illustrate the benefit of the decision function solving algorithm. My 

continued research will use my decision function algorithm heavily for minimzation of different 

kind of multi-level logic structures. 
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EXPERIMENTAL RESULTS FOR BINARY BENCHMARKS  

The presented algorithm was applied to several single-output benchmarks from ISCAS and 

MCNC PLA test sets. The PLA benchmark input format consists of terms, mainly those of which 

have an output of one. Each input term is some combination of ones, zeros, and don’t cares. Each 

benchmark is analysed according to the algorithm and the output is displayed graphically as well 

as numerically. The pulse counts are recorded. 

Table 1 shows the numerical results from the synthesis. The program is very time efficient, 

taking only a few milliseconds for the benchmark with 16 variables and 1547 terms.  

Table 1 shows the pulse counts from the MEMRMIN-2WM algorithm in the column labelled 

Method1. For comparison purposes, I also used two other synthesis tools. Exorcism4.exe 

[Mishchenko01a] provides efficient ESOP minimization. This tool was used on the same PLA 

files. I then created another program to count the pulses required to realize the optimized ESOP 

circuit. Pulse counts used for NAND and NOT gates were the same as what was used in Method1. 

Each negated literal as an input had additional cost of 2 pulses (NOT gate). Each EXOR gate has 

a pulse count of 6. The pulse count from this is shown in the column labelled Method2. The second 

tool that was used was Rondo.exe from UC Berkeley. This tool provides efficient SOP 

minimization. All the PLA files were processed with this tool, and then another program was used 

to count pulses as was done for the ESOP circuits. The results from this experiment are shown in 

the column labelled Method3. A fourth experiment was conducted by taking the optimized output 

from Rondo.exe tool (SOP minimizer) and using it as the input to the MEMRMIN-2WM algorithm 

to find out if a combination of method would make my results even better. These results are 

recorded in the column labelled Method4. 

TABLE I.  PULSE COUNTS FROM 4 DIFFERENT METHODS 

Method 1: Algorithm described in this paper (MEMRMIN-2WM) 

Method2: ESOP Minimization (exorcism4.exe) 

Method3: SOP Minimization (Rondo.exe) 

Method4: MEMRMIN-2WM after SOP minimization 
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The method described in this paper realized some of the functions with much less pulses. The 

highlighted rows show where the MEMRMIN-2WM method provided better results. This 

algorithm yielded better results for most functions. In general, this tool was advantageous for 

functions with a larger number of variables. This is important since most practical circuits will 

have larger number of variables. 

Based on the results, on average my tool was better than all other tested tools in number of 

pulse counts. Another benefit of this tool is the working memristor cost, since it only uses two 

working memristors. The other tools were not optimized to reduce the number of working 

memristors. If that is done, the pulse counts for Methods 2 and 3 will perhaps further increase. 

Obviously, Method4, which was a combination of SOP minimization followed by my 

algorithm, yielded some improvements. In all cases, the results from Method4 were either the same 

as in Method1, or better. This implies that Method4 can always be used as the best method. This 

Method1 Method2 Method3 Method4

exam1_d.pla 3 4 32 23 30 32

exam3_d.pla 4 6 27 30 35 27

rd53f1.pla 5 6 30 56 28 30

xor5_d.pla 5 16 125 41 190 125

rd53f2.pla 5 20 56 93 98 56

con1f1.pla 7 5 35 57 23 35

con2f2.pla 7 6 23 44 36 17

rd73f3.pla 7 35 210 329 208 210

rd73f1.pla 7 42 142 184 614 142

rd73f2.pla 7 64 257 61 1022 257

rd84f3.pla 8 1 10 8 8 10

newtag_d.pla 8 14 12 74 54 9

newill_d.pla 8 22 42 122 87 29

rd84f1.pla 8 120 214 245 1370 214

rd84f2.pla 8 128 336 73 2302 336

rd84f4.pla 8 162 420 674 628 420

max46_d.pla 9 47 120 877 881 120

9sym_d.pla 9 189 420 1112 1174 420

sao2f1.pla 10 10 67 223 212 67

sao2f2.pla 10 20 49 281 438 49

sao2f4.pla 10 85 39 245 313 34

sao2f3.pla 10 92 41 266 255 20

sym10_d.pla 10 837 1260 1912 2518 1260

t481_d.pla 16 1547 121 164 10464 95

Benchmark 

File

Variables Minterms Results (Pulse Count)
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fact is obvious because, by doing SOP minimization first, only primes from a reduced cover are 

used and not all primes in every layer. Finally, a tool can be created that would select the best of 

all solutions from Methods 2, 3 and 4. 

COST ANALYSIS FOR DIFFERENT LOGIC CIRCUITS  

Let’s look at different logic circuits and analyse the relative costs of these circuits if 

implemented using Memristor based Imply gates. The cost is determined by the number of 

memristors required and the pulse count required to implement the circuit. Let’s start with a few 

illustrations. 

Figure 19. (a) Realization of Unate SOP with 2WMs, (b) Realization of general SOP with 6WMs 

 

Figure 19 (a) shows a Unate SOP function. For this function, each product term is implemented 

by a NAND gate. Number of Imply gates required are equal to number of inputs to the NAND 

gate. So counting all positive literals (p) in the expression (7 for the example AC+BCD+AD) 

provides this count. In the ISD notation, these correspond to the vertical lines coming from the 

input memristors to the first working memristor.  For each term, one extra pulse is required for 

initialization, and one pulse is required to accumulate the output of NAND gate into the second 

memristor. Thus a count of 2*terms is added to the count. This leads to the count of (p+2T) pulses 

for Unate SOP expression.    

For a general SOP expression that can consist of negated variables, there are two ways to create 

the memristor circuit. If the inputs are negated once and stored in additional memristors, then no 
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additional pulses are needed, since the negation can be done on the same pulse when working 

memristors are being initialized. However L additional memristors are needed. This is shown in 

Figure 19(b). A second method is to use only one additional working memristor. This is used as a 

temporary memristor to negate a variable when needed. This adds one additional pulse for each 

negation. 

Similar analysis is done for different kind of expressions. The results are shown in Table II.  It 

gives the generalized cost for different functions using my methods. Values are calculated based 

on how many IMPLY gates are needed to realize each gate in the expression. In every case, the 

number of input variables equals the number of input memristors needed. The number of working 

memristors depends on what type of gates would typically be used to realize the expression. 

The following notations are used in the Table II. 

p = positive literals, e.g., for AC̅+A̅B̅D+B̅D̅, this is 2 

n = negative literals, e.g. for AC̅+A̅B̅D+B̅D̅, this is 5 

T = total terms, e.g. for AC̅+A̅B̅D+B̅D̅, this is 3 

L = unique input variables, e.g. for AC̅+A̅B̅D+B̅D̅, this is 4 (A,B,C,D) 

IM = input memristors  

WM = working memristors 

TABLE II.  CALCULATING PULSE COUNTS FOR DIFFERENT FUNCTIONS 
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The table shows the comparison of memristor circuits for various types of Boolean functions 

with example expressions. For instance, an arbitrary affine function needs only 3 WM and an 

arbitrary FPRM (Fix-Polarity Reed Muller) needs only 5WM. Pulse count is a function of unique 

input literals (L), total positive variables in the expression (p), total negative variables in the 

expression (n) and total terms in the expression (T).  

These results may be useful to select appropriate synthesis methods and design new synthesis 

methods. 

CONCLUSION 

The presented method realized in program MEMRMIN-2WM is one of the first approaches to 

create a formal algorithm to minimize the number of pulses for a memristor-based logic circuit 

Type Example Expression Pulse Count IM WM

Unate SOP AC+BCD+AD p+2T L 2

General SOP AC+̅A̅B̅D+B̅D̅ p+2n+2T L 3

Unate POS (A+B).(B+C+D).(E+A) 2p+T+2 L 3

General POS (A+B).(B̅+C+D̅).(E+̅A) 2p+n+T+2 L 3

Linear Parity 

Function ABC 7T L 3

Affine Parity 

Function AB̅C 7T L 3

ESOP ABCA̅B̅C̅ADE p+n+T+(T-1)*7 L 5

PPRM ABCDEAD p+T+(T-1)*7 L 5

FPRM ABCD̅EB̅C p+n+T+(T-1)*7 L 5

Using L extra Memristors to store one-time negated literals

General SOP AC+̅A̅B̅D+B̅D̅ p+n+2T L 2 + L

Unate POS (A+B).(B+C+D).(E+A) p+T+2 L 2 + L

General POS (A+B).(B̅+C+D̅).(E+̅A) p+n+T+2 L 2 + L
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that has the minimal number of WMs. This method does not assure a minimum solution, but it 

gives better results than the methods from [Lehtonen09, Lehtonen10, Poikonen12] based on 

manual computations (Lehtonen does not provide a data table with numerical results). My method 

also gives better results than [Burger13] on many functions. By analysing the solutions produced 

by this method, I found that further improvements of the presented algorithm are possible. In 

contrast to other methods, my approach allows for synthesizing circuits with don’t cares. A higher 

percentage of don’t cares corresponds to relatively better results.  

I further expanded my research and synthesized other methods such as SOP and POS. I used 

Decision Functions to further minimize the cost. The Imply Sequence Diagram (ISD) notation that 

I created makes it simple to understand Memristor Imply gates, working memristors and pulse 

counts. 

My current research as well as plans for future research include the following: (1)  extension to 

multiple-output binary incompletely specified functions and assuming not necessarily only two 

WMs, (2) generalization of the method to multiple-valued (ternary) logic, (3) realization of POS 

(Product of Sums) circuits with minimum number of WM, (4) adaptation of the bi-decomposition 

algorithm [Mishchenko01] to concurrently minimize the number of WM and pulses 

[Mishchenko01], (5) adaptation of the method to fuzzy logic by using fuzzy maps instead of truth 

tables. I also found that the method from this paper can be easily extended to fuzzy logic and I 

plan to create real-life fuzzy benchmark functions (for instance from ML and robot control 

problems) and test the program on them. I plan also to investigate the trade-offs between the 

number of WM and the number of pulses for large benchmark functions. 
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